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Smoke from forest fires in the western part of North America reached the High

Altitude Research Station Jungfraujoch, Switzerland, at the beginning of September

2017. Number concentration of ice nucleating particles (INPs) active at −15 ◦C or

warmer decreased by about half during its passage. This is different to observations

of enhanced INP concentrations in fresh plumes from forest fires. We hypothe-

sise that INPs initially present in a smoke plume are lost or deactivated during

long-range transport, while components of smoke capable of deactivating INPs orig-

inally present or mixed later into the plume continue to remain active across a longer

distance.
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1 INTRODUCTION

Dozens of forest fires had shrouded large parts of the Pacific

Northwest, USA, and western Canada at the beginning of

September 2017 in a cloud of smoke and ash (Stevens, 2007).

A large fraction of the smoke cloud detached, crossed North

America and the Atlantic, and arrived after about 4 days in

western Europe, as satellite data have shown (NASA Earth

Observatory, 2017). One of the most comprehensive mea-

surement programmes of in situ trace gas and aerosol prop-

erties at a mountain site worldwide is run at the High Alti-

tude Research Station Jungfraujoch (3,580 m above sea level

(a.s.l.)) in Switzerland. While the station is predominantly

exposed to pristine lower free troposphere air masses, sev-

eral parameters clearly indicated the presence of smoke for

a period of approximately 2 days, from 7 September in the

evening until 9 September around noon (Figure 1). We took

this rare chance to investigate the long-distance impact of

forest fires on ice nucleating particles (INPs).

Previous observations in the USA have shown that for-

est fires can regionally enhance INP number concentrations

above background (Prenni et al., 2012; McCluskey et al.,
2014), though not all fuels produce INPs (Petters et al., 2009)

and smouldering fires are a negligible source of INPs (Prenni

et al., 2012). However, flaming fires, such as the ones having

caused the plume we sampled, can double or triple INP num-

ber concentrations regionally and measurably enhance them

even 1,600 km downwind (Prenni et al., 2012). Upon further

transport, the sign of the impact may change. For example in

October 2004, numerous fires in Siberia could have led to the

substantial decrease in INP number concentration registered

3–4 days later above Alaska, where an increase in the frac-

tion of carbonaceous particles was observed simultaneously

(Prenni et al., 2009).
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FIGURE 1 Upper panel: Six-day time series of PM10 (thick line), PM1 (thin line), and CO (dotted line) at Jungfraujoch. Enhanced concentrations of PM

from 7 September 2017 in the evening until 9 September around noon were associated with an average Scattering Ångström Exponent (SAE) of 2.0 and an

Absorption Ångström Exponent (AAE) of 1.3, indicating an elemental/organic carbon (EC/OC) mixture (Cazorla et al., 2013). The SAE value clearly

distinguishes the event from a Saharan dust episode, when SAE is around 1.0. The ratio of PM10 to PM1 would also be much larger for dust episodes. Lower

panel: OC concentrations derived from PM10 filters sampled over 24 h

2 METHODOLOGY

A comprehensive set of aerosol physical properties and trace

gases are continuously measured at Jungfraujoch (7◦59′02′′E,

46◦32′53′′N, 3580 m a.s.l.) as part of the Swiss contribution

to the World Meteorological Organization (WMO)’s Global

Atmosphere Watch (GAW) programme and the operation

of the Swiss National Air Pollution Monitoring Network

NABEL (Bukowiecki et al., 2016; Steinbacher et al., 2017).

Next to the continuous analysis, integrated samples of par-

ticulate matter <10𝜇m (PM10) are collected at a rate of

30 m3/h on quartz-fibre filters (140 mm effective diameter)

for 24 hours starting midnight. We analysed sections of these

filters for their content of INPs active at −15 ◦C or warmer

(INP−15). From each filter, 54 punches (1 mm diameter) were

immersed in the same number of 0.5 mL Eppendorf tubes

with 0.1 mL ultrapure water and exposed in a cold bath to a

temperature of −7 ◦C, declining over the course of 25 min to

−15 ◦C. The number of frozen tubes was observed visually at

−15 ◦C. The method is described in more detail in Conen et al.
(2012; 2015). Apart from the 3 days with enhanced mark-

ers of smoke (7–9 September 2017) we also analysed filters

of the 2 preceding days, and of the day following the event.

For comparison, we include data from background condi-

tions during summer (PM10 < 2𝜇g/m3) and two Saharan dust

events observed during the summers of 2016 and 2017. Saha-

ran dust events are clearly recognisable at Jungfraujoch in the

ochre colouring of PM10 filters, in back-trajectories and in

aerosol parameters (Collaud Coen et al., 2004; Conen et al.,
2015). Number concentrations of particles were determined

with an optical particle counter (TSI 3330, TSI Incorpo-

rated), which measures the number size distribution in 16 size

channels between 0.3 and 10𝜇m (optical diameter), as well

as with a scanning mobility particle sizer (SMPS: Wieden-

sohler et al., 2012) in the size range 16–591 nm (mobility

diameter).

3 RESULTS AND DISCUSSION

The average number concentration of particles larger than

0.5𝜇m in diameter (n0.5) increased during the smoke event

by about a factor of 20. This increase in n0.5 was dominated

by an increased particle number between 0.5 and 0.6𝜇m opti-

cal diameter as a result of strongly increased upper tail of the

accumulation mode. The modal diameter increased from 90 to

200 nm (mobility diameter) and the particle number between

100 and 500 nm increased from <100 to 300–600 cm−3. In

contrast, number concentrations of INP−15 were smaller, only

about half as large, during the smoke episode compared to the

3 days bracketing it. Compared to other background values

in summer, INP−15 concentration was not particularly high

before and after the event (Figure 2). Observed INP−15 con-

centrations during background conditions were between the

two empirical parametrizations proposed by DeMott et al.
(2010; 2015) for INPs as a function of n0.5 and temperature.

The earlier parametrization is based on a large number of field

observations from a variety of locations on Earth; the later

parametrization additionally includes laboratory data. The

later parametrization is explicitly for the immersion freezing

ability of mineral dust particles. It is in good agreement with

our observations of Saharan dust events. However, the smoke

event was clearly below the lower prediction (Figure 2). This

implies that the upper tail of the accumulation mode size dis-

tribution, which dominated n0.5 during the smoke event, gave

an under-proportional contribution to INP−15 compared to

INP−15 number fraction relative to n0.5 typically observed dur-

ing background and Saharan dust conditions at Jungfraujoch.

Background aerosol particles mixed into the smoke plume

probably constituted the majority of INP−15 at Jungfraujoch

during the smoke event, because the number concentration of

INP−15 during the event was only half the background value

before and after the event. Hence, it is unlikely that the smoke

itself contained relevant numbers of INP−15 when it reached
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FIGURE 2 Number concentration of INP−15 in relation to particles larger

than 0.5𝜇m (n0.5) at Jungfraujoch during the passage of smoke from distant

forest fires (filled diamonds). The values 2 days before, and the day after the

smoke event, (open diamonds) fall into the cluster of other background

values (circles; PM10 < 2𝜇g/m3). Data of two Saharan dust events during

summer are added for comparison (×: 2016; +: 2017). The two lines

indicate parametrizations of INP−15 as a function of n0.5 (continuous line:

DeMott et al., 2010; dashed line: DeMott et al., 2015). For control, we

analysed from two filters in each cluster (background, Saharan dust events,

smoke event) the 5 mm wide fringe, where no air has passed through. These

upper estimates of blank values (Conen et al., 2012) were on average 8% of

the sample values shown in the plot

Jungfraujoch, unless it was diluted less than 1:1 with back-

ground air, which is unlikely after the travelled distance. On

the contrary, some INP−15 in the background aerosol seem

to have been deactivated by mixing with smoke. Organic

aerosol constitutes the largest mass fraction of aerosol (PM1)

in forest fire plumes (Kondo et al., 2011) and gas phase dif-

fusion efficiently redistributes its semi-volatile components

between aerosol particles in the lower troposphere (Marcolli

et al., 2004). Condensation of such compounds onto back-

ground particles could have deactivated some of their ice

nucleation-active sites (Möhler et al., 2008; Primm et al.,
2017). Similarly, secondary organic aerosol particles gen-

erated in a smoke plume can coagulate with background

particles and cover large parts of their surface (Deboudt

et al., 2010). In our observation, the deactivating compounds

must have been water-insoluble, otherwise they would have

been removed from the ice nucleation active sites during the

immersion freezing assay. Alternative explanations for the

observed decrease in INP concentrations during the smoke

event include their deactivation by compounds that were not

emitted by the forest fires, sedimentation of activated INP

with ice crystals prior to the arrival of the smoke-affected air

mass at Jungfraujoch, and initially reduced number concen-

trations of background INP−15 in the smoke-dominated air

masses.

Previous observations revealed the potential of forest fires

to regionally increase the number concentration of INPs

active at temperatures colder than−15 ◦C (Petters et al., 2009;

Prenni et al., 2012; McCluskey et al., 2014), although the ratio

of INP to n0.5 is smaller in fresh smoke than in background air

(McCluskey et al., 2014). Our opportunistic study of INP−15

during the passage of aged smoke also shows a small ratio of

INP to n0.5, but no increase in INP concentrations. Absolute

concentration of INP−15 was smaller in the smoke-affected

air mass than in background air, similar to the observation

made by Prenni et al. (2009) in Alaska. Based on these ini-

tial pieces of evidence we propose the following working

hypothesis: INPs initially present in smoke plumes are lost or

deactivated during long-range transport, while components of

smoke that deactivate INPs, also in background air masses,

are transported further.
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